電気分解の原理とは? わかりやすく解説!

電解質の水溶液に電流を通すとイオンが電気を運ぶ役目をして電極にくっついて電気を失い、もとの物質と違う物質を生じます。 

イオンがあれば、いつもこのような電気分解が行われるかどうかこれから調べることにしましょう。


電気分解の原理

電解質の水溶液には陽イオンと陰イオンとが数多くあります。

この溶液に、2つの電極を浸して片方を電池の陽極につなぎ、もう一方を陰極につなぎます。

すると、陽イオンは陰極のほうへ陰イオンは陽極のほうへ引っぱられて動きます。

つまり、水溶液の中を電流が通るわけですが金属の中を電流が通るときと様子が違います。

金属の中では電子が動いて電流が流れることになりますが水溶液の中では、イオンが電気を運ぶので電流が流れます。

物質そのものが移動するのです。



水の電気分解

純粋な水は、ほとんど電離していませんからイオンが少なくて電流が流れません。

しかし、水酸化ナトリウムや硫酸のような電解質を溶かすと電流がよく流れるようになります。

ここでは水酸化ナトリウムを溶かした水溶液を電気分解するときのことを考えてみましょう。

水酸化ナトリウムの水溶液には陽イオンのナトリウムイオンと陰イオンの水酸イオンがたくさんあります。

このうちの水酸イオンは-の電気をもっていますから陽極に引っぱられてくっつき電極の+の電気をもらって、電気を帯びなくなります。

そして、水酸イオンの電気のなくなったものが酸素と水に変化して、陽極からは酸素が発生するわけです。

また、ナトリウムイオンは陰極に引きつけられますがなかなか電極にくっつきません。

かえって、水がごくわずか電離して生じている水素イオンのほうが陰極にくっつき、電極の-の電気をもらって電気を帯びない水素原子になってしまいます。

そして、水素原子が2個集まって水素分子となり、陰極から水素が発生します。

水酸イオンや水素イオンが少なくなると、水が新しく電離してこれを補うので結局は、水の電気分解となり、水酸化ナトリウムは変化しないことになります。

実験室で、電気分解をする場合はホフマン電解装置という図のような装置がよく用いられます。

34

電極のところをよく観察すると陽極から酸素が、陰極から水素が発生しているのがわかります。

水の電気分解をまとめると式にあるように、水2分子から水素2分子と酸素1分子ができる反応ですから電気分解によって生じる酸素と水素の体積は常に1対2となります。




電解質と非電解質とは? わかりやすく解説!

電解質

陽イオンや陰イオンがどのような仕組みになっているかは今までの説明でわかったことと思います。 


ところでみなさんは+電気と-電気が引きあってくっつこうとすることは知っているでしょう。

陽イオンと陰イオンもそれぞれ+電気と-電気をもっているのですからお互いに引きあってくっつきます。

例えば、+電気をもっているナトリウムイオンと-電気をもっている塩素イオンとは水溶液でないときは、お互いにくっついて、塩化ナトリウムという化合物になります。

このようにしてできている化合物は塩化ナトリウムのほかに塩化第二銅や硫酸アンモニウムなど、たくさんあります。

このような化合物は、水に溶かすと水のはたらきによってまた陽イオンと陰イオンとに分かれてしまいます。

ある物質が水に溶けてその成分の陽イオンと陰イオンとに分かれることを電離といいます。

電離するような物質の水溶液は電流をよく導き電流によって電気分解される性質があるので水に溶けて電離する物質のことを電解質といいます。



非電解質

電解質の水溶液がよく電気を導くのにたいして砂糖の水溶液は電気を導きません。

純粋な水もほとんど電気を導きませんがそれは、これらの液の中にイオンがないから電気を導かないのです。

つまり、砂糖も水も電離しにくいわけです。

水に溶けてもイオンを生じない物質は電気を通しませんし電気分解されることもありません。

それで、このような性質をもった物質を非電解質といいます。

このように、その水溶液が電流を通すか、通さないかによって物質を電解質と非電解質とに分けることができますが物質の種類によっては、どちらともつかない中くらいに電離するものもあります。

例えば、酢酸の水溶液が電気を導く程度は塩化ナトリウムの水溶液に比べると悪いですが砂糖の水溶液よりは、電気をよく導ききます。

これは、酢酸の水溶液中で酢酸は完全には電離せずほんの少ししか電離していないためです。
このような電解質を弱電解質といいます。

これにたいして、塩化ナトリウムのように水に溶けて、完全に電離してしまうような電解質のことをとくに、強電解質といいます。

また、水の分子も極めてわずかですが電離しています。
つまり、水分子1千万個について1個のわりで電離しています。

この程度では電気を導くことはほとんどできません。

しかし、水のこのわずかの電離によってできた水素イオンが電気分解のときなどには大切なはたらきをしています。




イオンとは? イオンのつくりと表し方とは? わかりやすく解説!

陽イオンと陰イオン

塩化第二銅の水溶液を電気分解するとき銅は陰極の表面につくのですから溶液中の銅は、陰極に引きつけられるような溶け方をしていると考えられます。 


それには、銅が十の電気を帯びて溶けているのにたいして塩素は一の電気を帯て溶けていると考えれば電気分解か起こる仕組みを無理なく説明づけることができます。

塩化第二銅が水に溶けたときには+の電気を帯びた銅の原子と、-の電気を帯びた塩素の原子とになっています。

ところが、水溶液に浸された電極のうち陰極のほうには-の電気がきていますから+の電気を帯びた銅の原子が引きつけられ電極の表面につきます。

ここで+と-の電気がいっしょになるために電気を帯びていない銅の原子になるわけです。

一の電気を帯びた塩素の原子は陽極に引きつけられ電気を失って塩素原子になりますが
塩素原子が2個むすびついて1個の塩素分子をつくります。

塩素分子はかなり水に溶けますが気体になって空気中に出ていくものもあります。

ここで、最初に考えたような電気を帯びた原子のことをイオンといいます。
そして+の電気を帯びた原子を陽イオン-の電気を帯びた原子を陰イオンといいます。

イオンのつくリ

原子のつくりは前に調べましたがイオンのつくりは原子のつくりとどう違うのでしょう。

原子は、+電気をもった陽子と電気をもたない中性子とがつまった原子核と
その周りを取り囲む電子とでできていました。

しかも、陽子の数と電子の数とは同じでした。
陽子がもっている十電気の量と電子がもっている一電気の量とは同じですから
原子ではそれらが互いに打消しあって電気的に+も-もしめさない中性になっています。

ところが、原子から電子をいくつか取り去ると原子から-電気の量が減るので+電気があまり原子は十電気を帯びた状態になります。

これが陽イオンです。



また、原子に他から電子が加わると-電気の量が増えるので原子は、-電気を帯びた状態になります。

これが陰イオンです。

いろいろな元素の原子のどれが陽イオンになりやすいか陰イオンになりやすいかということはその原子にふくまれている電子の数によって決まります。

いいいかえれば、元素の種類によって決まるわけです。

一般に金属元素の原子は陽イオンになりやすく非金属元素の原子は陰イオンになりやすくなっています。

また、1個の原子から電子がとれたり電子が加わったりして陽イオンや陰イオンができるだけではありません。

いくつかの原子がむすびついた原子の集団から電子がとれたり電子が加わったりして原子の集団全体として1個の陽イオンや陰イオンとなるときもあります。

例えば、硫酸の水溶液にはイオウ原子1個と酸素原子4個とからできた原子の集団に2個の電子が加わった硫酸イオンとよばれる陰イオンがふくまれています。

イオンのあらわし方

原子1個は元素記号であらわし、分子1個は分子式であらわされます。

また、いろいろな物質は化学式であらわされています。
イオンをあらわすのには元素記号と+や-の電気の量をあらわす記号とが使われています。

1個の原子が1個のイオンになった場合は、その元素記号で種類をあらわし
陽イオンの場合は元素記号の右肩に+の記号陰イオンの場合は-の記号をつけます。

そして、何個の電子が離れたり加わったりしたかによって+や-の記号にその数をあらわす数字をつけます。

また+や-の記号をその数だけならべる書き方もあります。

これをイオン式といいます。

例えば、第二銅イオンの場合は原子から2個の電子が離れて+電気を帯びるのですから銅の元素記号Cuにの右肩に+をつけます。

Cu2+または、Cu++のとなるわけです。

イオンに関係する電子の数1が1個のときは+や-に数字をつけないことになっています。




モバイルバージョンを終了