元素が発見されたのはいつ頃? メンデレーエフの予言とは?

元素と化合物

フランスの化学者ラボアジエは、物が燃えるわけを研究して「プリーストリーが発見したガスは、きっと空気の中にあるに違いない」と考えました。

いろいろ実験したのちラボアジエは、自分の考えが正しいことを明らかにしてプリーストリーの発見したガスに酸素ガスという名前をつけたのです。

ラボアジエはまた、元素にはどんなものがあるか元素どうしはどんな割合で化合してどんな物質をつくるかなどということを深く研究しました。

そして、つぎのようなことを明らかにしました。
「空気は、酸素ガスと窒素ガスが混じってできている。木炭は炭素からできている。

木炭が空気の中で燃えるのは、炭素が酸素と結びついて(化合して)二酸化炭素(炭酸ガス)になるのだ。

ろうそくは、炭素・酸素・水素が化合してできた物質(化合物)だ。

ろうそくが空気の中で燃えるときは、ろうそくの中の炭素が空気の中の酸素と化合して二酸化炭素(炭酸ガス)になり水素は酸素と化合して水になる。

鉄を空気の中で強く熱すると黒いさびにかわる。鉄のさびは、鉄と酸素の化合物だ。物質の種類は何万もある。

しかし、すべての物質は、酸素・水素・炭素・窒素・鉄などの元素がめいめい決まった割合で化合している。

化合物に、新しくできたり、かわったりする。しかし、化合物をつくる元素は、消えてしまうことはない」

ラボアジエのこのような考えをもとにして、たくさんの学者が研究をすすめました。

そして、これまで知られていなかった元素を発見したり化合物のしくみを研究したりしました。


物質は原子からできている

イギリスのドールトンいう化学者は、つぎのような考えで元素の研究をすすめました。

「ラボアジエの考えた元素とは、どういうものだろう。
酸素という元素は、もっと詳しく調べると、非常に小さい粒に違いない。
炭素も、やはり、小さい粒でできているに違いない。

そして炭素の粒何個かと、酸素の粒何個かと結びついて二酸化炭素(炭酸ガス)の粒ができるのだろう。

水も、やはり、酸素の粒と水素の粒とが決まった数ずつ結びついてできたものに違いない」

ドールトンは、こうして考えた元素の粒のことを、原子と名付けました。
そして「物質は、元素の粒である原子の組み合わせでできている」と発表しました。

これは、1803年のことです。

原子どうしが結びついてできた化合物のことを私たちは分子とよんでいます。
物質の研究は、このドールトンの考えが発表されてから、とんどんすすみました。

偶然の発見は無くなった

続く元素の発見

ドールトンが原子説を発表してから後、新しい元素が続々と発見されていきました。
そして、ラボアジエがつくっておいた元素表にはつぎつぎと新しい元素がつけくわえられ、間違いも直されていきました。

1774年には塩素が、1807年にはカリウムとナトリウムがそれぞれの水酸化物から取り出されました。

1812年にはヨウ素が発見されました。

1817年にはリチウムとカドミウムが、同じ年にさらにセレンが発見されアルミニウムは1827年に金属として取り出されました。

しかしこれらの元素は、学者たちが、まだどんな元素があるのかわからないまま偶然に発見されていたのでした。



メンデレーエフの予言

1875年フランスの化学者ボアボードランは、ガリウムを発見したときロシアのドミトリ・メンデレーエフから、一通の手紙をもらってびっくりしました。

その手紙には「あなたが測定されたガリウムの比重4.7は間違いで、5.9~6.0が正しいと思います」と書いてあったからです。

ボアボードランは、早速ガリウムの比重をはかり直してみました。
すると、メンデレーエフのいう通り、5.96となりました。

ガリウムを見たことも、もちろんその比重をはかったこともないメンデレーエフがどうしてガリウムの比重を予言することができたのでしょうか。

それは彼が、元素の周期律を発見していたからです。

メンデレーエフは、それまで発見された、元素の性質を丹念に調べ元素の性質にしたがって、元素を並べた表をつくってみました。

すると元素は、正しい規則にしたがって並んでいることがわかりました。

そして、まだ発見されていない元素の性質さえわかりました。
こうして、メンデレーエフの周期律表ができてからは化学者たちは計画的に研究をすすめることができるようになったのです。




元素と原子、分子とは? わかりやすく解説!

元素と原子

物質を細かく分けていくと最後に、もうそれ以上分けることができない小さな粒になるという考えは古代のギリシアやローマ・インドの学者たちも考えました。


ギリシアのデモクリトスはこの粒を「分けることができない」という意味で、アトムと名づけました。

その後、1808年にイギリスのドールトンは物質のもとになる粒について、つぎのような原子説を発表しました。

「元素は、原子という小さな粒からできている。
同じ元素の原子はみな等しく、元素か違えば原子も違う。

水素や酸素などは一種類の原子からできており水の原子には、水素や酸素の原子が含まれている。

物質の変化は、原子の集まり方がかわるだけであってそれぞれの原子は、一定の重さをもっていてなくなることも壊れることもなくまた、新しくできるというようなこともない」

この原子説は、そのころの学者たちにすぐには認められませんでしたがいろいろな物質の変化をうまく説明するにはどうしても、原子を考えたほうが都合がよいのでその後、だんだん認められるようになりました。

今では、原子というものがあるということは世界中で認められ、原子の構造もわかってきて原子のもつ性質を原子力として利用するまでになりました。

同じ元素の原子は、性質・重さ・大きさなどが全く同じです。
ですから、原子の種類は元素の種類と同じ数だけあるわけです。

そして、水素・酸素・炭素などの元素の原子はそれぞれの元素の名前をとって水素原子・酸素原子・炭素原子などと呼ばれて区別されます。



分子

水を細かく分けていくと、水の性質をもっていてしかも、これ以上分けるともう水の性質がなくなってしまうような小さな粒になります。

このような、物質の性質をなくさない最も小さい粒をその物質の分子といいます。

分子は、その物質を形づくっている元素の原子が結びつきあってできています。
         
例えば、水の分子は、水素原子2個と酸素原子1個とからできています。

また、水素の分子は水素原子2個から酸素の分子は酸素原子2個からそれぞれできています。

また、砂糖の分子や石油の成分の分子などには1個の分子に50個ぐらいの炭素や水素などの原子がふくまれています。

一方、たんぱく質や合成樹脂など高分子物質の中には、炭素・水素・酸素などの原子が100万個以上も集まってできている物質もあります。

原子・分子の大きさ

原子やふつうの分子の一個一個は目には見えませんし顕微鏡を使っても見ることができないほど小さい粒です。

原子一個の大きさは、だいたい直径が1億分の1センチメートル重さが1グラムの1兆分の1のさらに1千億分の1ぐらいで想像することができないほど小さいものです。

分子1個の大きさや重さもだいたい、原子と同じぐらいですが中には、ようやく、光の助けをかりてその存在を認めることができる程度の大きさのものもあります。

原子や分子の大きさや重さはこのように非常に小さいものですから、わずかの物質を取ってみてもその中にふくまれている原子や分子の数はものすごく多くなります。

例えば、コップ一杯の水(160立方センチ)には約6兆の1兆倍個の水の分子がふくまれています。

もしかりに、コップ一杯の水を海に注ぎ世界中の海をかき混ぜて、もういちどコップ一杯くみあげればこのコップの中には、もとの水の分子が800個ほどふくまれることになります。

また、コップ一杯の水の分子が砂粒ほどの大きさになったとするとそれは地球の全表面を1センチメートルの厚さで覆うほどになります。




元素の周期律表とは? 元素記号とは? わかりやすく解説!

元素の周期律

19世紀に入って、次々に新しい元素が発見されました。
これらの元素には性質のよく似たものもありました。
      
ところが、元素を重さの順にならべるとだいたい決まった数ごとに性質のよく似た元素が並ぶことがわかりました。

例えば、フッ素から8番めの塩素塩素から18番めの臭素、臭素から18番めのヨウ素の4つの元素はどれもほかの元素と化合物をつくりやすく硝酸銀と作用させると、銀との化合物をつくります。

このように、元素を並べていってよく似た性質の元素が周期的にあらわれることを元素の周期律といいます。

元素の周期律を最初にまとめたのはロシアのメンデレーエフとドイツのマイヤーです。


元素の予言

メンデレーエフが元素の周期律について発表したのは1869年です。
そのころ知られていた元素は63種でした。

彼は元素を並べるときに、適当な元素がないところは空けておきそこに入るはずの元素の性質を予言しました。

後になって、その元素が発見されるとメンデレーエフの予言がよく当たっていたので元素の周期律の価値が人々に認められるようになりました。

予言した元素 → 発見された元素

エ力ホウ素  → スカンジウム Sc

エカケイ素  → ゲルマニウム Ge

エカアルミニウム → ガリウム   Ga
エカマンガン   → テクネチウム Te
ドビーマンガン  → レニウム   Re
 

元素の周期律表

元素の周期律をまとめて表にしたものを周期律表といいます。

表にあらわす方法はいくつも考えられていますが長周期型とよばれるものがよく使われています。

メンデレーエフのころは元素を重さの順に並べましたが今では、原子番号の順に並べることになっています。

周期律表の元素の名前のところにしめしてある数字が原子番号をあらわしています。

また、アルファベットの文字はその元素をあらわす記号で、元素記号とよばれるものです。

フッ素・塩素・臭素・ヨウ素はどれも銀と化合物をつくりやすいだけでなく水素と化合すると、強い酸性をしめす化合物をつくるしこれらの元素だけでできているものはどれも刺激の強い臭いをもっています。

それで、これらの元素をまとめて、ハロゲン族とよんでいます。

また、周期律表の左に並んでいるリチウム・ナトリウム・カリウムなどの金属は水をよく分解して水素を発生させますし塩素と化合すると、食塩によくにた化合物をつくります。

これらの元素は、アルカリ金属とよばれます。

そのほか、ヘリウム・ネオン・アルゴンなどは産出量が少なく、なかなか化合物をつくりにくい性質があって希ガスとよばれます。

このように、周期律表の縦に並んでいる元素はみんな共通の性質をもっています。

また、周期律表の中で、左下にある元素ほど金属としての化学的な性置が強く、右上にある元素ほど、非金属としての化学的な性質が強くたっています。



元素の名前

水素・酸素・同・金などの名前はよく聞くことがありますが中には、アルゴン・ラドン・テクネチウムなどのように怪獣の名前のような元素もあります。

これらの元素の名前は、主にラテン語からとったものです。
元素の名前は、地名をとったものもありますし星の名前、元素の性質、科学者の名前、神様の名前などいろいろの呼び名がもとになっています。
 

元素記号

元素をあらわすには、記号をつかうと便利ですから昔からいろいろな元素記号が考えられました。

古い時代には、そのころ知られていた金属に太陽系の遊星をあらわす神様をあてはめて図のような形でそれをあらわしたこともあります。

その後、長いあいだに、新しい元素がつぎつぎと発見され18世紀の終わりごろには、その数も数十に達しました。

1803年に、イギリスの科学者ドールトンは元素にはその元素に特有な原子があることをはじめて説明しそれは球形をしているとして、上の図のような記号を考えました。

しかし、水・二酸化炭素・アンモニアなども元素と考えていたようです。

スウエーデンの化学者ベルセリウスは、元素をアルファベットであらわす方法を考えます。

彼の方法では、元素のラテン語の頭文字を、活字体の大文字で書いて元素記号とするものです。

もし、同じ頭文字の元素が2つ以上ある場合にはそれらの元素の名前から、他の一字をとり、それを小文字で書きそえます。

例えば、Cの字のつく元素記号とそのラテン語名は、上の図のようになります。




モバイルバージョンを終了